Rheology Gels and Networks

Tyler Shendruk

March 31, 2011

Outline

- Structural Properties
- 2 Elastic Properties
 - Thermodynamics
- Viscoelastic Properties

Terms

Gel Solid formed by linking molecular strands into network

Terms

Gel Solid formed by linking molecular strands into network

Crosslink Bonds can be

Physical linking

Terms

Gel Solid formed by linking molecular strands into network

Crosslink Bonds can be

Physical linking

Strong effectively permanent

- Microcrystals
- Glassy clusters

Weak Reversible and temporary associations

- Hydrogen bonds
- Hydrophobic association
- Ionic interactions

Terms

Gel Solid formed by linking molecular strands into network

Crosslink Bonds can be

Physical linking

Strong effectively permanent

- Microcrystals
- Glassy clusters

Weak Reversible and temporary associations

- Hydrogen bonds
- Hydrophobic association
- Ionic interactions
- Chemical linking

Covalent bonds.

Chemical Gelation

Chemical Gelation Mechanisms

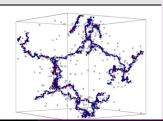
Condensation of monomers in a melt or solution

Chemical Gelation

Chemical Gelation Mechanisms

Condensation of monomers in a melt or solution

Vulcanization cross-linking of long chains



Formation

Linking

Sol polydisperse mixture of branched polymers in a **sol**vent

Formation

Linking

Sol polydisperse mixture of branched polymers in a **sol**vent

Gel "Infinite Polymer"

Formation

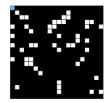
Linking

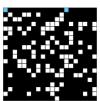
Sol polydisperse mixture of branched polymers in a **sol**vent

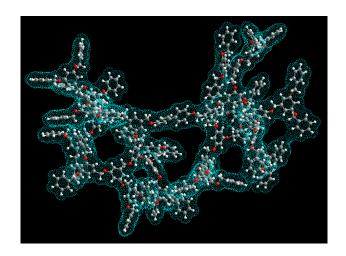
Gel "Infinite Polymer"

Incipient Gel One structure perculates the entire system

Sol-gel Transition The moment the incipient gel forms







Mean-Field Theory

• Linking does not necessarily lead to gelation

Mean-Field Theory

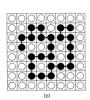
- Linking does not necessarily lead to gelation
- There's some condition on the probablity of making a link and the number of links

Mean-Field Theory

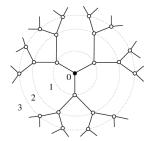
- Linking does not necessarily lead to gelation
- There's some condition on the probablity of making a link and the number of links
- That sounds amenable to a mean-field theory

Mean-Field Theory

- Linking does not necessarily lead to gelation
- There's some condition on the probablity of making a link and the number of links
- That sounds amenable to a mean-field theory
- Coordination number?

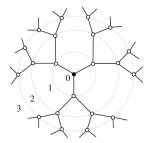






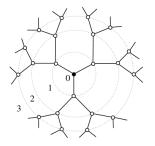
Bethe Lattice

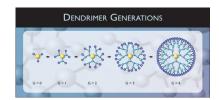
• Monomers have some functionality f



Bethe Lattice

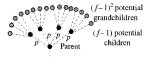
- Monomers have some **functionality** *f*
- Each has some **probablity** *p* to form a bond (independent of other bonds)





Bethe Lattice

- Monomers have some functionality f
- Each has some **probablity** *p* to form a bond (independent of other bonds)



Grandparent

Bond Percolation Model (Mean-Field Model of Gelation)

Consider some parent site (who has a definite grandparent)

Grandparent

- Consider some parent site (who has a definite grandparent)
- There are (f-1) potential neighbours

Grandparent

- Consider some parent site (who has a definite grandparent)
- There are (f-1) potential neighbours
- Thus, the average number of bonds is

$$p(f - 1)$$

Grandparent

- Consider some parent site (who has a definite grandparent)
- There are (f-1) potential neighbours
- Thus, the average number of bonds is

$$p(f-1)$$

- If p(f-1) < 1 then the next generation has a smaller population than the last and the sol must be finite
- Else if p(f-1) > 1 then each new generation has a larger population than the last and sol branches to infinity becoming an incipient gel

Grandparent

Conclusion

The transition occurs when

$$p_c = \frac{1}{f - 1}$$

- Consider some parent site (who has a definite grandparent)
- There are (f-1) potential neighbours
- Thus, the average number of bonds is

$$p(f-1)$$

- If p(f-1) < 1 then the next generation has a smaller population than the last and the sol must be finite
- Else if p(f-1) > 1 then each new generation has a larger population than the last and sol branches to infinity becoming an incipient gel

Assessment

Comments

- The probablity *p* is often called the **extent of reaction** and can be used to specify the sol fraction and the gel fraction, the moments of the size distribution.
- Mean-field percolation only holds on a Bethe Lattice and so in 2 and 3D the number of functional groups and the degree of polymerization are not easily related (researchers resort to numerical studies).
- But Mean-field percolation works exceptionally well for vulcanization (where f is now the the number of crosslinkable monomers).

Entropy

Helmholtz Free Energy

The fascinating elastic properties arise from the entropy as follows:

$$F = U - TS$$

$$dF = -SdT - pdV + fdL$$

$$= \frac{\partial F}{\partial T}\Big|_{V,L} dT + \frac{\partial F}{\partial V}\Big|_{T,L} dV + \frac{\partial F}{\partial L}\Big|_{T,V} dL$$

Therefore,

$$f = \frac{\partial F}{\partial L}\Big|_{T,V}$$
$$S = -\frac{\partial F}{\partial T}\Big|_{V,L}$$

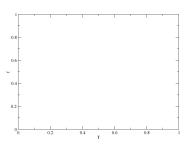
Maxwell Relation

$$-\frac{\partial S}{\partial L}\Big|_{T,V} = \frac{\partial f}{\partial T}\Big|_{V,L}$$

Entropy

Force to Deform Network

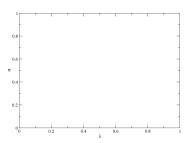
$$f = \frac{\partial F}{\partial L}\Big|_{T,V} = \frac{\partial U}{\partial L}\Big|_{T,V} + \frac{\partial f}{\partial T}\Big|_{V,L}$$



Stress-Elongation

Shear Modulus

$$\sigma = G\lambda$$



$$L_i = \lambda_i L_{0,i}$$

$$S\left(N, \vec{R}\right) = -\frac{3}{2} k_{\rm B} \frac{\vec{R}^2}{Nb^2} + S_0$$

$$L_i = \lambda_i L_{0,i}$$

$$S\left(N, \vec{R}\right) = -\frac{3}{2} k_{\rm B} \frac{\vec{R}^2}{Nb^2} + S_0$$

Free Energy

$$\Delta F = -T\Delta S = \frac{n}{2}k_{\rm B}T\left(\lambda_x^2 + \lambda_y^2 + \lambda_z^2\right)$$

$$L_{i} = \lambda_{i} L_{0,i}$$

$$S\left(N, \vec{R}\right) = -\frac{3}{2} k_{B} \frac{\vec{R}^{2}}{Nb^{2}} + S_{0}$$

Free Energy

$$\Delta F = -T\Delta S = \frac{n}{2}k_{\text{B}}T\left(\lambda_{x}^{2} + \lambda_{y}^{2} + \lambda_{z}^{2}\right)$$

- Incompressibility
- Uniaxial Deformation

$$L_{i} = \lambda_{i} L_{0,i}$$

$$S\left(N, \vec{R}\right) = -\frac{3}{2} k_{B} \frac{\vec{R}^{2}}{Nb^{2}} + S_{0}$$

Free Energy

$$\Delta F = -T\Delta S = \frac{n}{2}k_{\rm B}T\left(\lambda_x^2 + \lambda_y^2 + \lambda_z^2\right)$$

- Incompressibility
- Uniaxial Deformation

Shear Modulus

$$G = \frac{\rho RT}{M_{\epsilon}}$$

Fluctuating Crosslinks

This does not take into account fluctuations which should lower free nergy by reducing cummulative stretch.

Effective Free Chains

The fluctuations of some monomer in an ideal chain with ficed ends is identical to the fluctuations of the end monomer with an effective length

$$K = \frac{N}{f}$$

Phantom Network

Fluctuating Crosslinks

This does not take into account fluctuations which should lower free nergy by reducing cummulative stretch.

Effective Free Chains

The fluctuations of some monomer in an ideal chain with ficed ends is identical to the fluctuations of the end monomer with an effective length

$$K = \frac{N}{f}$$

Shear Modulus

$$G = \frac{\rho RT}{M_s} \left(\frac{f - 2}{f} \right)$$

Entanglement

Can entanglement give us the softening?

Entanglement

The tube diameter is

$$a \approx bN_e^2$$

So a can be interpreted as the end-to-end distance between entanglement points. If an entanglement is equivalent to a crosslink and the shear modulus is $k_{\rm B}T$ per crosslinked strand then

$$G_e = \frac{\rho RT}{M_e}$$

where $M_e = N_e m$.

Entanglement

Can entanglement give us the softening?

Entanglement

The tube diameter is

$$a \approx bN_e^2$$

So a can be interpreted as the end-to-end distance between entanglement points. If an entanglement is equivalent to a crosslink and the shear modulus is $k_{\rm B}T$ per crosslinked strand then

$$G_e = \frac{\rho RT}{M_e}$$

where $M_e = N_e m$. Which is independent of N but has not changed the deformation dependence.

Subtle Tube

Tube

However, the tube also limits fluctuations.

• When the network is deformed by some λ_i , we expect the tube diameter to change. Instead of

$$a \approx bN_e^{1/2}$$

we expect $N_e'\cong N_eN_e\lambda$ (since $L\propto N$ between entanglements). The effective tube diameter is only

$$a' \approx bN_e^{1/2}$$
$$= bN_e^{1/2} \lambda^{1/2}$$
$$= a\lambda^{1/2}$$

Subtle Tube

Shear Modulus

The effective entanglement molar mass goes like the effective entanglement number so the shear modulus becomes:

$$G = G_x + G_e$$
$$= G_x + \frac{G_e}{\lambda + 1}$$

Shear Modulus

The effective entanglement molar mass goes like the effective entanglement number so the shear modulus becomes:

$$G = G_x + G_e$$
$$= G_x + \frac{G_e}{\lambda + 1}$$

Wrong-ish

Shear Modulus

The effective entanglement molar mass goes like the effective entanglement number so the shear modulus becomes:

$$G = G_x + G_e$$
$$= G_x + \frac{G_e}{\lambda + 1}$$

Wrong-ish

• Mooney-Rivlin Equation:

$$G=C_1+\frac{C_2}{\lambda}$$

• Non-affin Tube Model:

$$G = G_x + \frac{G_e}{\lambda - \lambda^{1/2} + 1}$$

