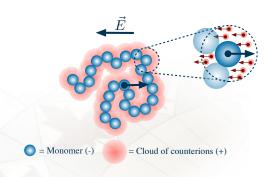
Electrophoretic Mobility within a Confining Well

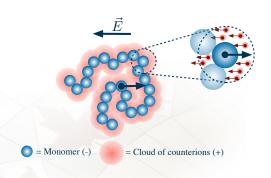
Tyler N. Shendruk Martin Bertrand Gary W. Slater
University of Ottawa

December 5, 2013


Free-Solution Electrophoresis:

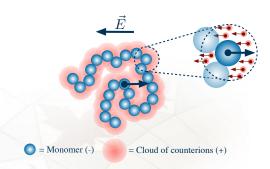
free-draining polyelectrolytes

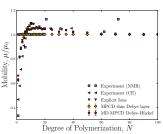
Free-Draining


• Free-solution electrophoretic mobility $(\mu_0 = Q/\xi)$ is independent of length and conformation

Free-Solution Electrophoresis:

free-draining polyelectrolytes


- Free-solution electrophoretic mobility $(\mu_0 = Q/\xi)$ is independent of length and conformation
- Drag is local and effective friction (ξ) increases with length (N), just like effective charge (Q)


Free-Solution Electrophoresis:

free-draining polyelectrolytes

Free-Draining

- Free-solution electrophoretic mobility $(\mu_0 = Q/\xi)$ is independent of length and conformation
- Drag is local and effective friction (ξ) increases with length (N), just like effective charge (Q)
- Counterion clouds (λ_D) screen both
 - electrostatic
 - and hydrodynamic interactions.

Separation via electrophoresis: breaking friction's *extensivity*

*

Many systems subvert mobility's size independence by simultaneously applying both an
electric field \(\vec{E} \) and a mechanical force \(\vec{f} \)

Examples: Gels, end-labeled free-solution electrophoresis, collisions with posts, translocation through nanopores, etc.

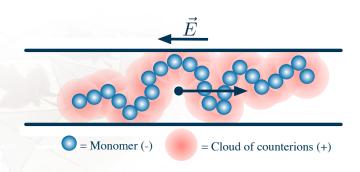
^a Balducci, Mao, Han and Doyle, Macromolecules, 39(18), 2006. Cross, Strychalski and Craighead, J. Appl. Phys., 102(2), 2007. Salieb-Beugelaar, et.al., Nano Letters, 8(7), 2008.

Separation via electrophoresis: breaking friction's *extensivity*

- *
- Many systems subvert mobility's size independence by simultaneously applying both an electric field \(\vec{E}\) and a mechanical force \(\vec{f}\)
 Examples: Gels, end-labeled free-solution electrophoresis, collisions with posts, translocation through nanopores, etc.
- Confinement in nanofluidic channels is observed to modify mobility but

[🛍] u Ottawa

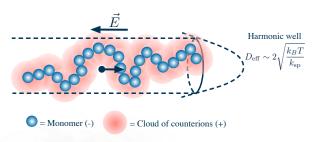
^a Balducci, Mao, Han and Doyle, Macromolecules, 39(18), 2006. Cross, Strychalski and Craighead, J. Appl. Phys., 102(2), 2007. Salieb-Beugelaar, et.al., Nano Letters, 8(7), 2008.


b Campbell, et.al., Lab Chip, 4(3), 2004

Separation via electrophoresis: breaking friction's *extensivity*

- Many systems subvert mobility's size independence by simultaneously applying both an
 electric field \(\vec{E} \) and a mechanical force \(\vec{f} \)

 Examples: Gels, end-labeled free-solution electrophoresis, collisions with posts, translocation through nanopores, etc.
- Confinement in nanofluidic channels is observed to modify mobility but conflicting experimental results have been reported.^{a,b}


[🛍] u Ottawa

^a Balducci, Mao, Han and Doyle, Macromolecules, 39(18), 2006. Cross, Strychalski and Craighead, J. Appl. Phys., 102(2), 2007. Salieb-Beugelaar, et.al., Nano Letters, 8(7), 2008.

b Campbell, et.al., Lab Chip, 4(3), 2004

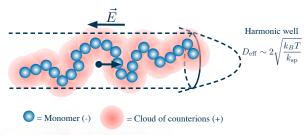
remove walls entirely!



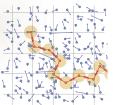
- Radially confining potential
 - well
 - no walls
 - harmonic well (spring constant k)
 - acts on monomers
 transparent to fluid

🛍 u Ottawa

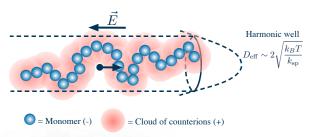
remove walls entirely!

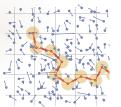


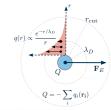
- Radially confining potential
 - well
 - no walls
 - harmonic well (spring constant k) acts on monomers
 - transparent to fluid
- Simplified polyelectrolyte
 - freely-jointed MD chain


remove walls entirely!

- Radially confining potential
 - well
 - no walls
 - harmonic well (spring constant k)
 acts on monomers
 - transparent to fluid
- Simplified polyelectrolyte
 - freely-jointed MD chain

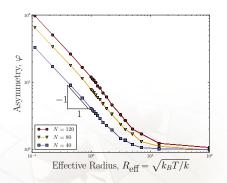

Coarse-Grained Electrohydrodynamics: Mean-Field MPCD-MD Debye-Hückel Algorithm


remove walls entirely!



- Radially confining potential
 - well
 - no walls
 - harmonic well (spring constant k) acts on monomers
 - transparent to fluid
- Simplified polyelectrolyte
 - freely-jointed MD chain

Coarse-Grained Electrohydrodynamics: Mean-Field MPCD-MD Debye-Hückel Algorithm

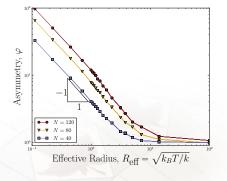


Mobility:

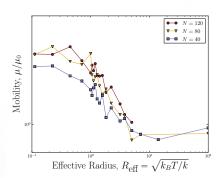
of confined and deformed polyelectrolytes

*

Asymmetry ratio


where $\varphi = R_{\rm g,x}/R_{\rm g,r}$

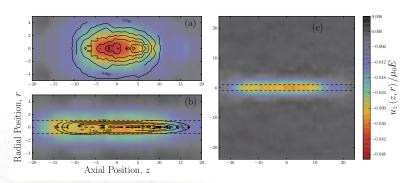
Mobility:


of confined and deformed polyelectrolytes

*

Asymmetry ratio

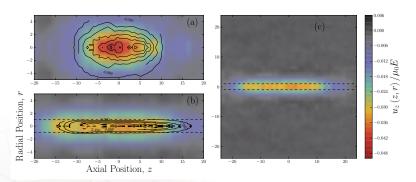
Electrophoretic Mobility



where $\varphi = R_{g,x}/R_{g,r}$

- The *conformation* has N dependence and continues to increases at strong confinement
- The *mobility* is *N*-independent and saturates at strong confinement

Free-draining: far-field fluid speed remains zero

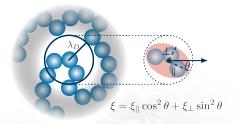


Free-draining:

far-field fluid speed remains zero

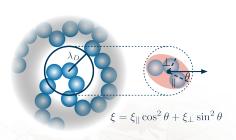
Together with the asymmetry ratio, the flow profiles suggest that *hydrodynamic interactions* remain screened.

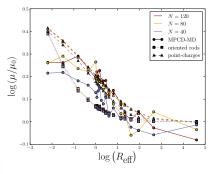
Why Does Mobility Increase? local hydrodynamic coupling

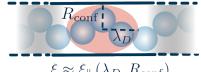


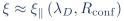
- Monomers within a given λ_D are hydrodynamically coupled.
- Segments are locally rod-like

Why Does Mobility Increase? local hydrodynamic coupling




- Monomers within a given $\lambda_{\rm D}$ are hydrodynamically coupled.
- Segments are locally rod-like
- Confinement orients the segments, lowering their local friction


Why Does Mobility Increase? local hydrodynamic coupling



- Monomers within a given λ_D are hydrodynamically coupled.
- Segments are locally rod-like
- Confinement orients the segments, lowering their local friction

Conclusion

- Conformation changes via antiparallel force are not equivalent to perpendicular force
 - mobility independent of conformation (while $R_{\it eff} > \lambda_{\rm D}$)
- Mobility varies in strong confinement
 - even in the absence of walls
 - requires finite λ_D
 - strong confinement decreases each segment's effective friction coefficient
- Future work:
 - improved simple models of effective friction coefficient
 - vary Debye length
 - steeper confining potential
 - fluid impenetrable walls

Thank you,

- Owen Hickey
- Mykyta Chubynsky
- Henk de Haan

- David Sean
- Zheng Ma