From Ceilidh dancing to mesoscale turbulence

Tyler Shendruk

Center for Studies in Physics & Biology The Rockefeller University

Oct 25, 2016

Outline

Introduction

Ceilidh dancing

Mesoscale turbulence

Conclusion

Outline & acknowledgements

Introduction

Ceilidh dancing

Mesoscale turbulence

Conclusion

- Julia Yeomans (Oxford)
- Amin Doostmohammadi (Oxford)
- Kristian Thijssen (Eindhoven University)
- Sumesh Thampi (IIT Madras)
- Ramin Golestanian (Oxford)
- Yilin Wu (Chinese Uni. Hong Kong)
- Haoran Xu (CUHK)

Dense suspensions of bacteria as active fluids

Figure: Swarm of self-motile, rod-like S. marcescens

Dense suspensions of bacteria as active fluids

Figure: A continuum of B. subtilis

Spontaneous flows & mesoscale turbulence

Figure: Mesoscale turbulence of highly concentrated 3D suspensions of *Bacillus subtilis* (vorticity)

Dunkel, et. al., Fluid Dynamics of Bacterial Turbulence, PRL (2013)

4 of 19 www.tnshendruk.com

Spontaneous flows & mesoscale turbulence

Mesoscale turbulence is not true turbulence

- Possesses characteristic length scales
- Viscously overdamped; No inertia; Re $\rightarrow 0$

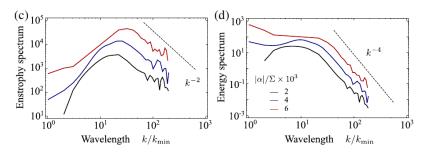


Figure: Inertial turbulence is scale-invariant; mesoscale turbulence is not.

Bratanov, et. al., New class of turbulence in active fluids, PNAS (2015) Giomi, Geometry & Topology of Turbulence in Active Nematics. PRX (2015)

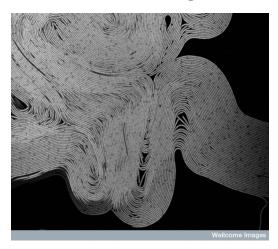


Figure: Rod-like (nematic) bacterial biofilm with clear disclinations

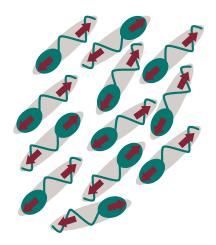


Figure: Force-free swimmers apply an active force dipole

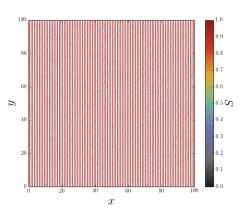
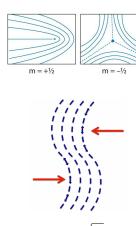
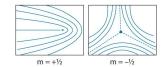


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



 $\ell_{\zeta} \sim \sqrt{\frac{K}{\zeta}}$



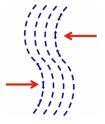


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability

UNIVERSITY OF OXFORD

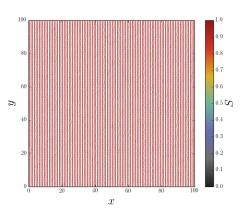
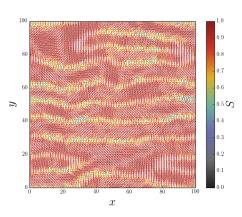


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



 $\ell_{\zeta} \sim \sqrt{\frac{K}{\zeta}}$



 $m = +\gamma_2$ $m = -\gamma_2$

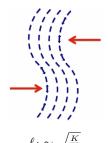
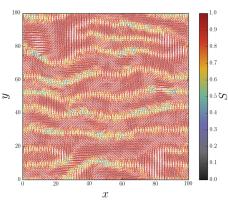
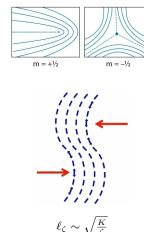


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



\$x\$ Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



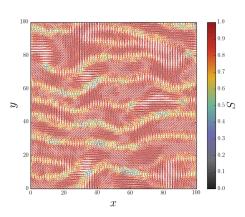
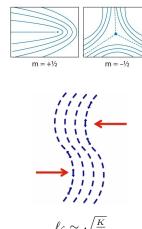


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



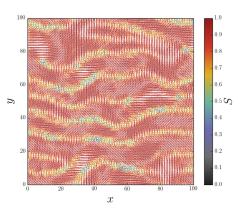
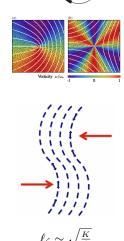


Figure: Generation of mesoscale turbulence in active nematics due to hydrodynamic instability



Giomi, Geometry & Topology of Turbulence in Active Nematics, PRX (2015)

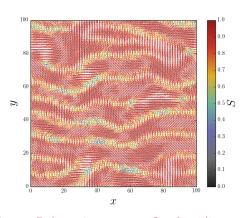
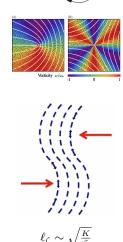


Figure: Deformations generate flow & +1/2 disclinations are self-motile since they are polar entities



What happens if we confine an active fluid?

What happens if we confine an active fluid?

We expect

• Mesoscale turbulence for a large enough container/active enough fluid

What happens if we confine an active fluid?

We expect

- Mesoscale turbulence for a large enough container/active enough fluid
- Stationary quiescence for a small enough container/low enough activity

What happens if we confine an active fluid?

We expect

- Mesoscale turbulence for a large enough container/active enough fluid
- Stationary quiescence for a small enough container/low enough activity
- Intermediate states?

UNIVERSITY OF

Figure: Spontaneous unidirectional flow occurs when moderately active fluids are confined

6 of 19 FIFA WORLD CUP, Duck flood!, YouTube (2014)

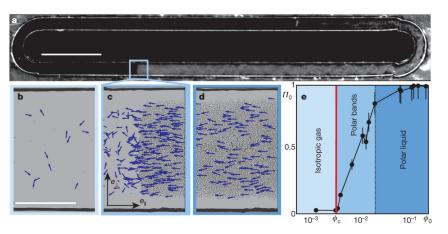
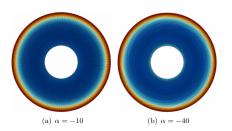


Figure: Spontaneous flow of motile colloids in a microfluidic racetrack

Figure: Rotational flows are stabilized by cylindrical confinement



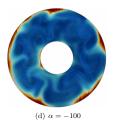


Figure: Various annular flows with increasing activity (quiescent, unidirectional, ordered vortices, mesoscale turbulence)

(c) $\alpha = -70$

Theillard, Alonso-Matilla & Saintillan, Geometric control of active collective motion, ArXiv (2016) Neef & Kruse, Generation of stationary and moving vortices in active polar fluids in the planar Taylor-Couette geometry, PRE (2014)

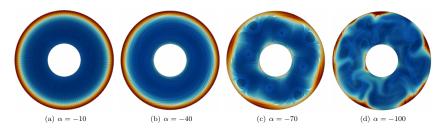


Figure: Various annular flows with increasing activity (quiescent, unidirectional, ordered vortices, mesoscale turbulence)

Theillard, Alonso-Matilla & Saintillan, Geometric control of active collective motion, ArXiv (2016) Neef & Kruse, Generation of stationary and moving vortices in active polar fluids in the planar Taylor-Couette geometry, PRE (2014)

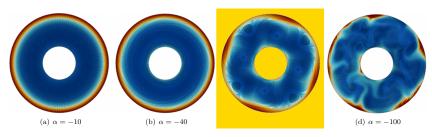


Figure: Various annular flows with increasing activity (quiescent, unidirectional, ordered vortices, mesoscale turbulence)

Theillard, Alonso-Matilla & Saintillan, Geometric control of active collective motion, ArXiv (2016) Neef & Kruse, Generation of stationary and moving vortices in active polar fluids in the planar Taylor-Couette geometry, PRE (2014)

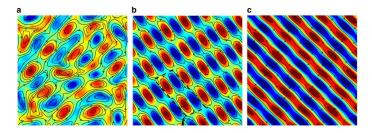


Figure: Vortex lattice is seen to exist in active nematics with dry friction term.

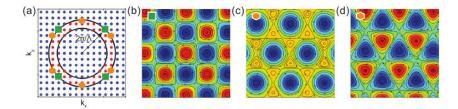


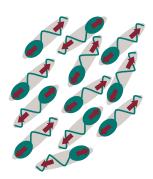
Figure: Using a generalized Navier-Stokes model, Jonasz Słomka has shown that these lattices arise as superimpositions of stress-free modes & are effectively frictionless flow states

Confinement & vortex lattices

Figure: Vortex lattice *Proteus mirabilis* swarm between air/water interface and sessile bio-film. Courtesy of Haoran Xu & Yilin Wu

UNIVERSITY OF OXFORD

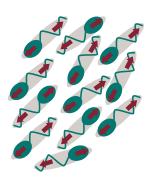
Modelling confined dense bacterial suspensions



Many swimmers with

- collective motion velocity field
- shape-anisotropic nematic (rod-like) orientation field
- ullet dense suspension continuity
- flagellated pushers extensile activity

Modelling confined dense bacterial suspensions



Many swimmers with

- collective motion velocity field
- shape-anisotropic nematic (rod-like) orientation field
- ullet dense suspension continuity
- flagellated pushers extensile activity

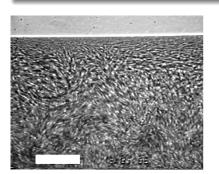
Dense bacteria suspension

intrinsically-out-of-equilibrium incompressible nematic liquid crystal

Density

Assume mass conservation of the suspension:

$$(\partial_t \rho + \underline{\nabla} \cdot [\rho \underline{u}]) = 0 \quad \rightarrow \quad \underline{\nabla} \cdot \underline{u} = 0$$



Constant added mass and size convergence

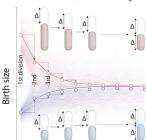


Figure: Cells sense & maintain mass

Figure: B. subtilis swarm

Ishikawa, Suspension biomechanics of swimming microbes, J R Soc Interface (2009)

8 of 19 Taheri-Araghi, et. al., Cell-Size Control & Homeostasis in

Orientational Order

$$(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{\underline{Q}} - \underline{\underline{S}} = \Gamma \underline{\underline{H}}$$

$$\underline{\underline{Q}} = \frac{3q}{2} (\underline{\underline{n}} \ \underline{\underline{n}} - \underline{\underline{I}}/3)$$

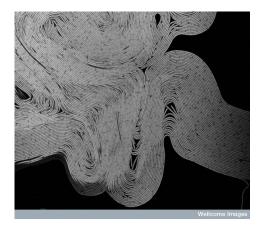


Figure: Bacterial biofilms with clear disclinations

Orientational Order

$$(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{\underline{Q}} - \underline{\underline{S}} = \Gamma \underline{\underline{H}}$$

$$\underline{\underline{Q}} = \frac{3q}{2} (\underline{\underline{n}} \underline{\underline{n}} - \underline{\underline{I}}/3)$$

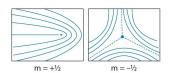


Figure: Topological charge must be conserved

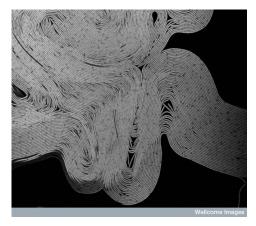


Figure: Bacterial biofilms with clear disclinations

Orientational Order

$$(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{\underline{Q}} - \underline{\underline{S}} = \underline{\Gamma} \underline{\underline{H}}$$

$$\underline{\underline{Q}} = \frac{3q}{2} (\underline{n} \ \underline{n} - \underline{\underline{I}}/3)$$

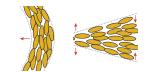


Figure: Nematic elasticity K

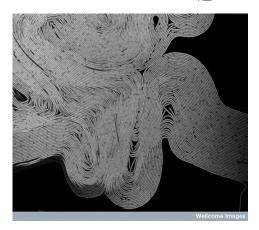


Figure: Bacterial biofilms with clear disclinations

Orientational Order

$$(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{\underline{Q}} - \underline{\underline{\underline{S}}} = \Gamma \underline{\underline{H}}$$

$$\underline{\underline{Q}} = \frac{3q}{2} (\underline{n} \ \underline{n} - \underline{\underline{I}}/3)$$

Figure: Co-rotational advection

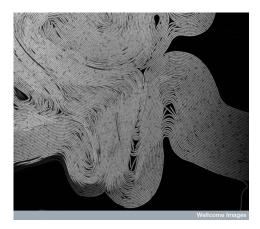
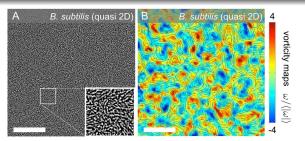


Figure: Bacterial biofilms with clear disclinations

Momentum

Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\underline{\Pi}}$ with a stress tensor $\underline{\underline{\Pi}}$ that includes

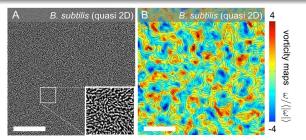


Wensink, et. al., Mesoscale turbulence in living fluids, PNAS (2012)

Momentum

Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\underline{\Pi}}$ with a stress tensor $\underline{\underline{\Pi}}$ that includes

Viscosity
$$\underline{\underline{\Pi}}^{\text{visc}} = 2\eta \underline{\underline{E}}$$



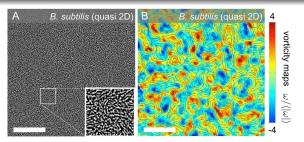
Wensink, et. al., Mesoscale turbulence in living fluids, PNAS (2012)

Momentum

Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\Pi}$ with a stress tensor $\underline{\Pi}$ that includes

Viscosity $\underline{\underline{\Pi}}^{\text{visc}} = 2\eta \underline{\underline{E}}$

Nematic LC $\underline{\Pi}^{LC}$



Wensink, et. al., Mesoscale turbulence in living fluids, PNAS (2012)

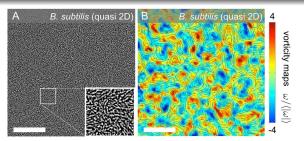
Momentum

Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\underline{\Pi}}$ with a stress tensor $\underline{\underline{\Pi}}$ that includes

Viscosity
$$\underline{\underline{\Pi}}^{\text{visc}} = 2\eta \underline{\underline{E}}$$

Nematic LC $\underline{\Pi}^{LC}$

Activity
$$\underline{\underline{\Pi}}^{\text{act}} = -\zeta \underline{\underline{Q}}$$



Wensink, et. al., Mesoscale turbulence in living fluids, PNAS (2012)

Momentum

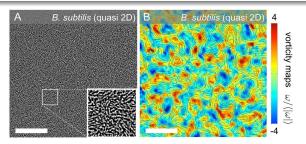
Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\Pi}$ with a stress tensor $\underline{\Pi}$ that includes

Viscosity
$$\underline{\Pi}^{\text{visc}} = 2\eta \underline{E}$$

Nematic LC Π^{LC}

Activity
$$\underline{\underline{\Pi}}^{\mathrm{act}} = -\zeta \underline{\underline{Q}}$$
 $\underline{\underline{f}}_{\mathrm{act}} = -\zeta \underline{\underline{\nabla}} \cdot \underline{\underline{Q}}$

$$\underline{f}_{\rm act} = -\zeta \underline{\nabla} \cdot \underline{\underline{Q}}$$



Momentum

Obeys Navier-Stokes $(\partial_t + \underline{u} \cdot \underline{\nabla}) \underline{u} = \underline{\nabla} \cdot \underline{\Pi}$ with a stress tensor $\underline{\Pi}$ that includes

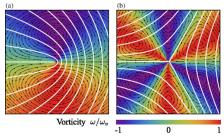
Viscosity
$$\underline{\underline{\Pi}}^{\text{visc}} = 2\eta \underline{\underline{E}}$$

Nematic LC Π^{LC}

Activity
$$\underline{\underline{\underline{\Pi}}}^{\mathrm{act}} = -\zeta \underline{\underline{\underline{Q}}} \qquad \underline{\underline{f}}_{\mathrm{act}} = -\zeta \underline{\underline{\nabla}} \cdot \underline{\underline{\underline{Q}}} \qquad v_{+1/2} \sim L\zeta/\eta$$

$$\underline{f}_{\rm act} = -\zeta \underline{\nabla} \cdot \underline{\underline{\zeta}}$$

$$v_{+1/2} \sim L\zeta/\eta$$



Giomi, Geometry & Topology of Turbulence in Active Nematics, PRX (2015)

2D active nematic in a microchannel

Figure: At very low activity, unidirectional flow (in 2D channel of height h)

Figure: At moderate activity, an ordered vortex-lattice forms

Figure: At high activity, active turbulence arises

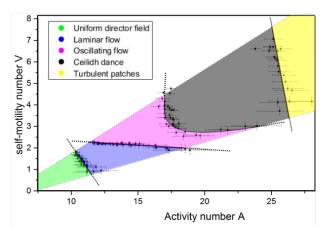


Figure: Dynamical steady state diagram of flow structures ("phase diagram").

$$A = \sqrt{\zeta h^2/K} \& V \sim v_{+1/2} \sim h\zeta/\eta$$

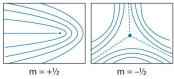
TNS, Doostmohammadi, Thijssen & Yeomans, Dancing disclinations in confined active nematics (submitted)

Confined vortex lattice

Consider the intermediate vortex lattice

- Intermediate behaviour:
 - \circ Ordered flow state \rightarrow vortex lattice
 - $\circ~$ Dynamically ordered topological state \rightarrow disclination dynamics

Figure: Intermediate behaviour; $\bullet = +1/2$ disclinations; $\blacktriangle = -1/2$ disclinations



TNS, Doostmohammadi, Thijssen & Yeomans, Dancing disclinations in confined active nematics (submitted)

Confined vortex latticeCeilidh dynamics

Consider the intermediate vortex lattice

- Intermediate behaviour:
 - \circ Ordered flow state \rightarrow vortex lattice
 - $\circ~$ Dynamically ordered topological state \rightarrow disclination dynamics

Figure: Ceilidh dancing (Strip the willow)

Quantifying Ceilidh dynamics

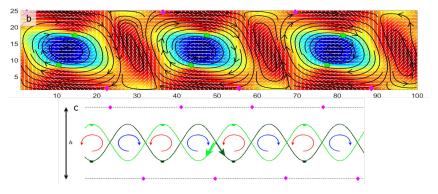


Figure: One pair of disclinations per vortex

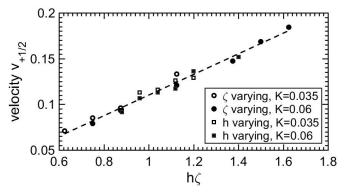
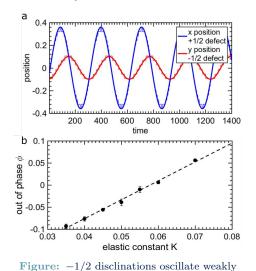


Figure: +1/2 disclination velocity $v_{+1/2} \sim h\zeta/\eta$ (as predicted by Giomi for a solitary disclination with $L \to h$)

Giomi, Bowick, Mishra, Sknepnek & Marchetti, Defect dynamics in active nematics, Phil. Trans. R. Soc. A (2014) TNS, Doostmohammadi, Thijssen & Yeomans, Dancing disclinations in confined active nematics (submitted)

Quantifying Ceilidh dynamics



TNS, Doostmohammadi, Thijssen & Yeomans, Dancing disclinations in confined active nematics (submitted)

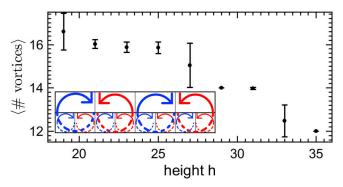


Figure: Only pairs of counter-rotating vortices & disclinations are allowed

Lattice defects

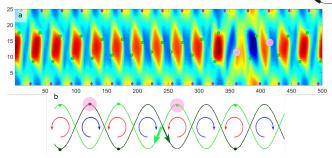


Figure: Spatialy structured Ceilidh dance can have impurities

Lattice defects

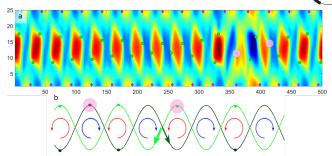


Figure: Spatialy structured Ceilidh dance can have impurities

Nomenclature

- Topologically disclinations $(\pm 1/2)$
- • = +1/2 disclinations; $\blacktriangle = -1/2$

- Lattice defects
 - $\circ~$ Broken-pairs lattice defects
 - \circ Drift lattice defects

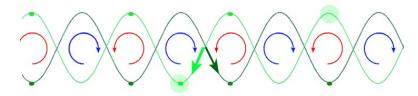


Figure: A pair of $\bullet = +1/2$ topological disclinations are separated & reside on distant vortices

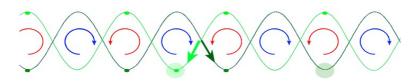


Figure: Like a broken-pair lattice defect but $\bullet = +1/2$ topological disclinations on unexpected trajectory. Results in drift

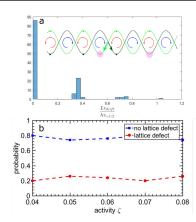


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

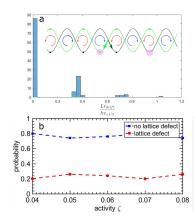


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

Drift velocity

• Active force density $\underline{f}_{\rm act} = -\zeta \underline{\nabla} \cdot \underline{Q}$

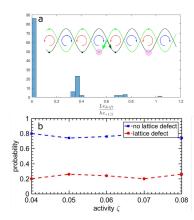


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

- Active force density $\underline{f}_{\rm act} = -\zeta \underline{\nabla} \cdot \underline{Q}$
- Dominated by disclinations $\underline{n}_{\pm 1/2} \approx [\cos(\pm \phi/2), \sin(\pm \phi/2)]$
- $F_{\text{act}}^{(1)} \approx \int_{b_2} f_{\text{act}} dA \sim \eta v_{+1/2}$.

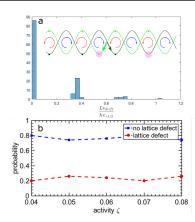


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

- Active force density $\underline{f}_{\rm act} = -\zeta \underline{\nabla} \cdot \underline{Q}$
- Dominated by disclinations $\underline{n}_{\pm 1/2} \approx [\cos(\pm \phi/2), \sin(\pm \phi/2)]$
- $F_{\rm act}^{(1)} \approx \int_{h^2} f_{\rm act} dA \sim \eta v_{+1/2}$.
- n drift lattice defects produce $F_{\text{act}}^{(n)} = n \ F_{\text{act}}^{(1)}$

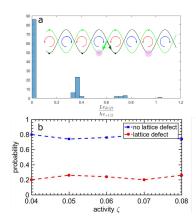


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

- Active force density $\underline{\underline{f}}_{\rm act} = -\zeta\underline{\nabla}\cdot\underline{\underline{Q}}$
- Dominated by disclinations $\underline{n}_{\pm 1/2} \approx \left[\cos\left(\pm \phi/2\right), \sin\left(\pm \phi/2\right)\right]$
- $F_{\rm act}^{(1)} \approx \int_{h^2} f_{\rm act} dA \sim \eta v_{+1/2}$.
- n drift lattice defects produce $F_{\text{act}}^{(n)} = n F_{\text{act}}^{(1)}$
- Mid-channel region moves *en* masse; viscous dissipation only in near-wall region
- $F_{\text{drag}} \sim -(L/h) \eta v_{\text{drift}}^{(n)}$.

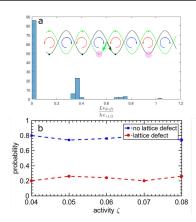


Figure: Drift velocity quantized since only integer number of lattice defects allowed.

- Active force density $\underline{\underline{f}}_{\mathrm{act}} = -\zeta \underline{\underline{\nabla}} \cdot \underline{\underline{Q}}$
- Dominated by disclinations $\underline{n}_{\pm 1/2} \approx \left[\cos\left(\pm \phi/2\right), \sin\left(\pm \phi/2\right)\right]$
- $F_{\rm act}^{(1)} \approx \int_{h^2} f_{\rm act} dA \sim \eta v_{+1/2}$.
- n drift lattice defects produce $F_{\text{act}}^{(n)} = n F_{\text{act}}^{(1)}$
- Mid-channel region moves *en* masse; viscous dissipation only in near-wall region
- $F_{\text{drag}} \sim -(L/h) \eta v_{\text{drift}}^{(n)}$.

$$v_{\text{drift}}^{(n)} \sim n\left(\frac{h}{L}\right) v_{+1/2}$$

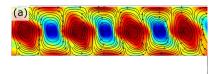
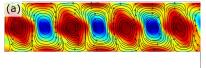


Figure: Ceilidh dynamics & vortex lattice



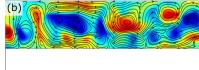


Figure: Fully formed mesoscale turbulence in a channel

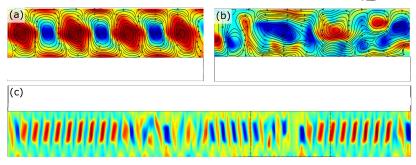


Figure: Active turbulence begins as localized "puffs"

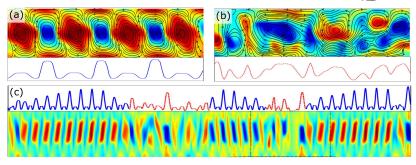


Figure: Active turbulence begins as localized "puffs", observable in the magnitude of the vorticity signal

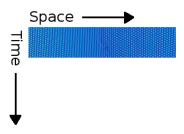


Figure: Raw enstrophy kymograph of spontaneous active puff creation

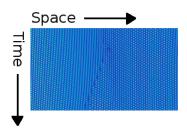


Figure: Raw enstrophy kymograph of spontaneous active puff creation

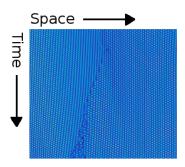


Figure: Raw enstrophy kymograph of spontaneous active puff creation

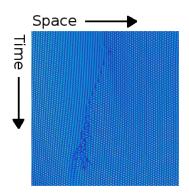


Figure: Raw enstrophy kymograph of spontaneous active puff creation

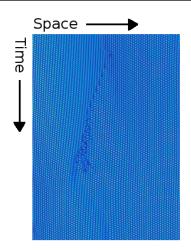


Figure: Raw enstrophy kymograph of spontaneous active puff creation

Low activity

Figure: Turbulent puffs decay or split

High activity

Figure: Turbulent puffs decay or split

Onset of active turbulence in a channel

Figure: Turbulent puffs decay or split

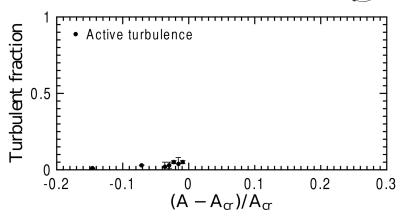


Figure: Looks like phase transition & grows like $\propto (A - A_{\rm cr})^{\beta}$, where $A = \sqrt{\zeta h^2/K}$

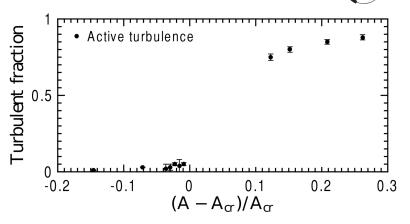


Figure: Looks like phase transition & grows like $\propto (A - A_{\rm cr})^{\beta}$, where $A = \sqrt{\zeta h^2/K}$

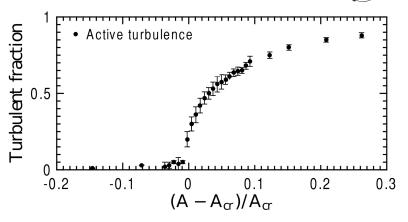


Figure: Looks like phase transition & grows like $\propto (A - A_{\rm cr})^{\beta}$, where $A = \sqrt{\zeta h^2/K}$

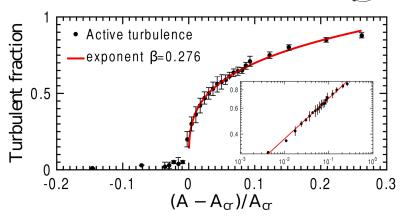


Figure: Looks like phase transition & grows like $\propto (A - A_{\rm cr})^{\beta}$, where $A = \sqrt{\zeta h^2/K}$

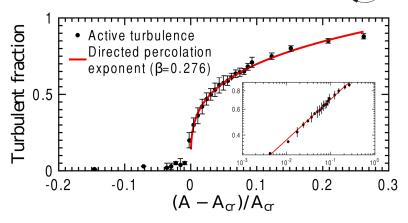


Figure: $\beta = 0.276$ corresponds to directed percolation universality class

Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split.

LINIVERSITY OF

Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split. p is probability that a site is activated at time t if one of its two backward sites is occupied. Critical probability p_c

UNIVERSITY OF

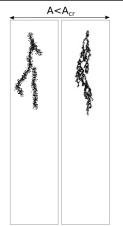


Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split. p is probability that a site is activated at time t if one of its two backward sites is occupied. Critical probability p_c

UNIVERSITY OF

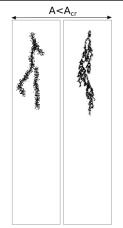




Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split. p is probability that a site is activated at time t if one of its two backward sites is occupied. Critical probability p_c

UNIVERSITY OF

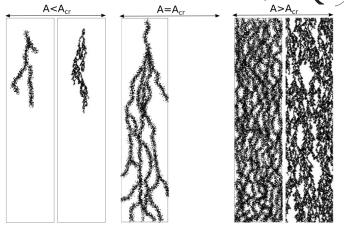


Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split. p is probability that a site is activated at time t if one of its two backward sites is occupied. Critical probability p_c

UNIVERSITY OF

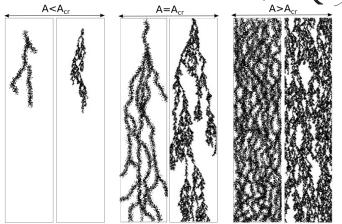
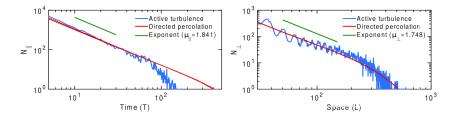


Figure: $\beta = 0.276$ corresponds to DP; puffs decay or split. p is probability that a site is activated at time t if one of its two backward sites is occupied. Critical probability p_c



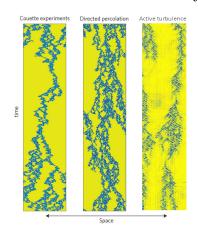


Figure: Both active turbulence & inertial turbulence belong to the DP universality class

Onset of inertial turbulence

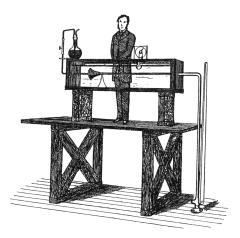
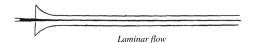


Figure: Osborne Reynolds studied the nature of turbulence in pipes in 1883

which determine whether the motion of water shall be direct or sinuous, & of the law of resistance in parallel channels, Proceedings of the Royal Society of London (1883)

Onset of inertial turbulence



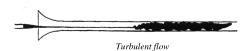


Figure: Laminar flow is linearly stable Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, & of the law of resistance in parallel channels, Proceedings of the Royal Society of London (1883)

Onset of inertial turbulence

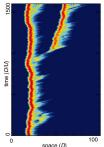


Figure: Using glass pipes (4mm×15000mm) and impulsive jets to form puffs, Björn Hof tied the onset of turbulence in pipes to DP in 2011

Avila, $\it{et.}$ al., The Onset of Turbulence in Pipe Flow, Science (2011)

Janssen/Grassberger conjecture

Short-range interacting systems, exhibiting a continuous phase transition into a unique absorbing state generically belong to the DP universality class (provided there are no additional symmetries)

Janssen/Grassberger conjecture

Short-range interacting systems, exhibiting a continuous phase transition into a unique absorbing state generically belong to the DP universality class (provided there are no additional symmetries)

 \bullet Channel screens long-range hydrodynamics

Janssen/Grassberger conjecture

Short-range interacting systems, exhibiting a continuous phase transition into a <u>unique</u> absorbing state generically belong to the DP universality class (provided there are no additional symmetries)

- Channel screens long-range hydrodynamics
- Laminar flow is linearly stable

Janssen/Grassberger conjecture

Short-range interacting systems, exhibiting a continuous phase transition into a unique absorbing state generically belong to the DP universality class (provided there are no additional symmetries)

- Channel screens long-range hydrodynamics
- Laminar flow is linearly stable

Spontaneous puff formation

Spontaneous activation destroys the absorbing state and drives the system away from criticality

Janssen/Grassberger conjecture

Short-range interacting systems, exhibiting a continuous phase transition into a unique absorbing state generically belong to the DP universality class (provided there are no additional symmetries)

- Channel screens long-range hydrodynamics
- Laminar flow is linearly stable

Spontaneous puff formation

Spontaneous activation destroys the absorbing state and drives the system away from criticality

• Equivalent to an external non-ordering field

UNIVERSITY OF

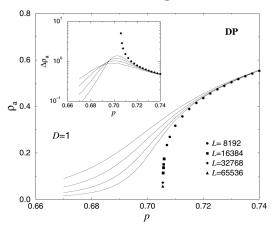


Figure: For sufficiently small rate of spontaneous creation, the critical point moves suddenly (but by a small amount) & the DP universal critical exponents hold, as well as the generalized homogeneous universal scaling functions

Lübeck & Willmann, Universal scaling behaviour of directed percolationa dn the pair contact process in an external field, J Phys A (2002)

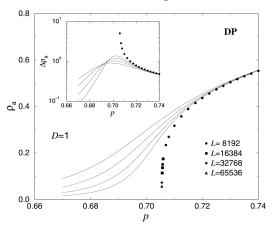


Figure: Pair Contact, diffusive pair contact & thereshold transfer processes each have a non-unique absorbing state, yet yield DP critical exponents

Lübeck & Willmann, Universal scaling behaviour of directed percolationa dn the pair contact process in an external field, J Phys A (2002)

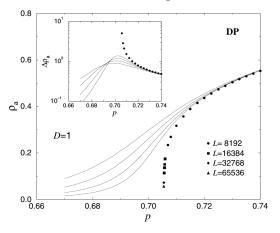


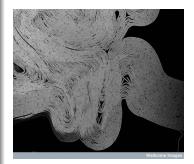
Figure: Lübeck et. al. consider this explicit evidence that the Janssen/Grassberger conjecture does not uniquely define the DP universality class

Lübeck & Willmann, Universal scaling behaviour of directed percolationa dn the pair contact process in an external field, J Phys A (2002)

Conclusion

Dancing & Turbulence in Active Matter

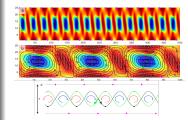
- Model dense bacterial suspensions as active nematics
- Ceilidh Dance
 - o Dynamic ordered state
 - Pairs of topological disclinations
 - Lattice defects
 - Broken-pairs
 - Quantized-drift
- Mesoscale Turbulence
 - Not true turbulence
 - Zero-Revnolds number
 - Characteristic length scale
 - o In a channel
 - Onset determined by puff dynamics (just like inertial turbulence)
 - Critical exponents belong to the DP universality class
 - despite spontaneous puff activation



Conclusion

Dancing & Turbulence in Active Matter

- Model dense bacterial suspensions as active nematics
- Ceilidh Dance
 - Dynamic ordered state
 - Pairs of topological disclinations
 - Lattice defects
 - Broken-pairs
 - Quantized-drift
- Mesoscale Turbulence
 - Not true turbulence
 - Zero-Revnolds number
 - Characteristic length scale
 - o In a channel
 - Onset determined by puff dynamics (just like inertial turbulence)
 - Critical exponents belong to the DP universality class
 - · despite spontaneous puff activation



Conclusion

Dancing & Turbulence in Active Matter

- Model dense bacterial suspensions as active nematics
- Ceilidh Dance
 - o Dynamic ordered state
 - Pairs of topological disclinations
 - Lattice defects
 - Broken-pairs
 - Quantized-drift
- Mesoscale Turbulence
- Not true turbulence
 - Zero-Revnolds number
 - Characteristic length scale
 - o In a channel
 - Onset determined by puff dynamics (just like inertial turbulence)
 - Critical exponents belong to the DP universality class
 - · despite spontaneous puff activation

