Assignment 5

Tyler Shendruk

October 26, 2010

1 Marion and Thornton Chapter 11

Dynamics of Rigid Bodies

Problem 11.26 1.1

In Euler coordinates the angular velocity of some rigid body is

$$\vec{\omega} = \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} \tag{1}$$

Our job is to obtain the components of the angular velocity in the body coordinate system in terms of Euler angles directly from the transformation matrix

$$\tilde{\lambda} = \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \tilde{\lambda}_{\phi} \tag{2}$$

where

$$\tilde{\lambda}_{\phi} = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\tilde{\lambda}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$

$$\tilde{\lambda}_{\psi} = \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(3a)
$$(3b)$$

$$\tilde{\lambda}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$
 (3b)

$$\tilde{\lambda}_{\psi} = \begin{pmatrix} \cos \psi & \sin \psi & 0\\ -\sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{pmatrix}. \tag{3c}$$

We can do this because we realize

$$\vec{\omega} = \vec{\phi} + \vec{\theta} + \vec{\psi}. \tag{4}$$

So all we have to do is find each of those terms in the body coordinates.

1. $\dot{\psi}$ is along the x_3 body axis so no work is required *i.e.*

$$\vec{\psi} = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} \tag{5a}$$

2. $\vec{\phi}$ is along the x_3 -body axis and so we must do a complete series of rotations:

$$\vec{\phi} = \tilde{\lambda} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix}$$

$$= \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \tilde{\lambda}_{\phi} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix} = \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix}$$

$$= \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix} = \tilde{\lambda}_{\psi} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix}$$

$$= \tilde{\lambda}_{\psi} \begin{pmatrix} 0 \\ \dot{\phi} \sin \theta \\ \dot{\phi} \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \dot{\phi} \sin \theta \\ \dot{\phi} \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} \dot{\phi} \sin \theta \sin \psi \\ \dot{\phi} \sin \theta \cos \psi \\ \dot{\phi} \cos \theta \end{pmatrix} (5b)$$

3. $\vec{\theta}$ is along what Marion and Thorton call the line of nodes which is in their notation along the x_1''' axis which is just a λ_{ψ} rotation away from the body system of coordinates (see Eq. 11.96 in the text). This gives

$$\vec{\dot{\theta}} = \lambda_{\psi} \begin{pmatrix} \dot{\theta} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \dot{\theta} \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \dot{\theta} \cos \psi \\ -\dot{\theta} \sin \psi \\ 0 \end{pmatrix}$$
(5c)

Therefore, adding all three up we have the angular velocity in the body coordinates in terms of the Euler angles to be

$$\vec{\omega} = \vec{\phi} + \vec{\theta} + \vec{\psi}$$

$$= \begin{pmatrix} \dot{\phi} \sin \theta \sin \psi \\ \dot{\phi} \sin \theta \cos \psi \\ \dot{\phi} \cos \theta \end{pmatrix} + \begin{pmatrix} \dot{\theta} \cos \psi \\ -\dot{\theta} \sin \psi \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}$$

$$= \begin{pmatrix} \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \\ \dot{\phi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{pmatrix}$$
(6)

Notice that the second way to phrase this is that $\dot{\psi}$ is only a single rotation $\tilde{\lambda}_{\psi}$ away from body coordinates, that $\dot{\theta}$ is two rotations $(\tilde{\lambda}_{\psi}\tilde{\lambda}_{\theta})$ away and that $\dot{\phi}$ is all three rotations away or must be transformed by $\tilde{\lambda} = \tilde{\lambda}_{\psi}\tilde{\lambda}_{\theta}\tilde{\lambda}_{\phi}$ which means

$$\vec{\omega} = \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \tilde{\lambda}_{\phi} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix} + \tilde{\lambda}_{\psi} \tilde{\lambda}_{\theta} \begin{pmatrix} \dot{\theta} \\ 0 \\ 0 \end{pmatrix} + \tilde{\lambda}_{\psi} \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}.$$

These don't require as much interpretation as the first way but do require one more matrix multiplication.

1.2 Problem 11.27

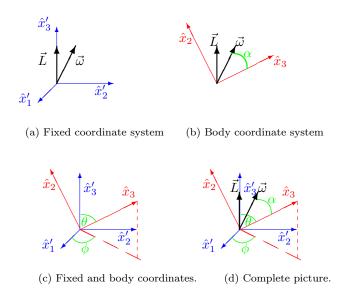


Figure 1: Angular momentum and angular velocity in the body (red) and fixed (blue) coordinate systems.

A symmetric body is in motion but isn't acted on by any forces or torques. The angular momentum \vec{L} is along the \hat{x}_3' axis in the fixed coordinate system as seen in Fig. 1a . We let \hat{x}_3 be the symmetry axis in the body system of coordinates. We let the angular velocity and momentum to both be in the \hat{x}_3 - \hat{x}_2 plane and let the angular velocity $\vec{\omega}$ be some angle α from \hat{x}_3 in this plane as seen in Fig. 1b .

Because \vec{L} is along \hat{x}_3' and in the \hat{x}_3 - \hat{x}_2 plane, we can say that the body coordinates and the fixed coordinates are related by the angle θ from the body axis x_3 to the fixed axis \hat{x}_3' (see Fig. 1c).

Also, since \vec{L} is in the \hat{x}_3 - \hat{x}_2 plane and along \hat{x}_3' it follows that \hat{x}_3' is in the \hat{x}_3 - \hat{x}_2 plane. Therefore, the \hat{x}_3 - \hat{x}_2 plane can be projected down onto the \hat{x}_1' - \hat{x}_2' plane and at any instant can be described by and angle ϕ from \hat{x}_1' . This is shown in Fig. 1c. The angles θ and ϕ are Euler angles.

This is all put together into Fig. 1d .

Question: What is the angular velocity of the symmetry axis \hat{x}_3 about \vec{L} in terms of I_1 , I_3 and α ?

We already defined the angle of \hat{x}_3 about \hat{x}_3' as ϕ . Therefore since \vec{L} lies along \hat{x}_3' we know that the angular velocity of \hat{x}_3 about \vec{L} is $\dot{\phi}$.

In the fixed coordinates, we know $\vec{L} = L\hat{x}_3'$ but looking at Fig. 1d we can

find

$$\vec{L} = \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix} = L \begin{pmatrix} 0 \\ \sin \theta \\ \cos \theta \end{pmatrix} \tag{7}$$

in the body coordinates.

But by Fig. 1b we also know that the angular velocity in the body coordinates (through α)

$$\vec{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \omega \begin{pmatrix} 0 \\ \sin \alpha \\ \cos \alpha \end{pmatrix} \tag{8}$$

can give the angular momentum to be

$$\vec{L} = \tilde{I} \cdot \vec{\omega} = \begin{pmatrix} I_1 \omega_1 \\ I_2 \omega_2 \\ I_3 \omega_3 \end{pmatrix} = \omega \begin{pmatrix} 0 \\ I_2 \sin \alpha \\ I_3 \cos \alpha \end{pmatrix}$$
(9)

where I_i are the moments of inertia in the body coordinates (or the principal moments of inertia). Equating Eq. (7) and Eq. (9) relates α to the Euler angle through the principle moments of inertia:

$$L\sin\theta = \omega I_2 \sin\alpha$$
$$L\cos\theta = \omega I_3 \cos\alpha$$

and dividing these and noting that $I_1 = I_2$ by symmetry gives

$$\tan \theta = \frac{I_1}{I_3} \tan \alpha \tag{10}$$

We will use Eq. (10) to give $\dot{\phi}$ in terms of I_1 , I_3 and α instead of θ .

In Eq. (8) we gave the angular velocity in the body coordinates but we can give $\vec{\omega}$ in the fixed coordinates through the Euler angles. This was the result of the last question (Eq. (6)):

$$\vec{\omega} = \begin{pmatrix} \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \\ \dot{\phi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{pmatrix}$$

We can arbitrarily pick $\psi=0$ since ψ is not altered ever in this problem which reduces $\vec{\omega}$ to

$$\vec{\omega} = \begin{pmatrix} \dot{\theta} \\ \dot{\phi} \sin \theta \\ \dot{\phi} \cos \theta + \dot{\psi} \end{pmatrix} \tag{11}$$

Comparing ω_1 in Eq. (11) and Eq. (8) we see that

$$|\dot{\theta} = 0 | \tag{12}$$

which we knew because α is constant.

Comparing ω_2 in Eq. (11) and Eq. (8) tells us that the angular velocity of procession is

$$\dot{\phi}\sin\theta = \omega\sin\alpha$$
$$\dot{\phi} = \omega\frac{\sin\alpha}{\sin\theta}$$

This may not seem helpful but notice from the common identity

$$1 = \cos^2 \theta + \sin^2 \theta$$
$$\frac{1}{\sin^2 \theta} = 1 + \frac{\cos^2 \theta}{\sin^2 \theta}$$
$$= 1 + \frac{1}{\tan^2 \theta}.$$

Therefore using Eq. (10), we have an angular velocity of

$$\dot{\phi} = \omega \frac{\sin \alpha}{\sin \theta}$$

$$= \omega \sin \alpha \sqrt{1 + \frac{1}{\tan^2 \theta}}$$

$$= \omega \sin \alpha \sqrt{1 + \left(\frac{1}{\frac{I_1}{I_3} \tan \alpha}\right)^2}$$

$$= \omega \sin \alpha \left[1 + \left(\frac{I_3}{I_1} \cot \alpha\right)^2\right]^{1/2}$$

$$= \omega \left[\sin^2 \alpha + \left(\frac{I_3}{I_1}\right)^2 \cos^2 \alpha\right]^{1/2}$$

$$\boxed{\dot{\phi} = \omega \cos \alpha \left[\tan^2 \alpha + \frac{I_3^2}{I_1^2} \right]^{1/2}}.$$
(13)